
Cary Huang
Highgo Software (Canada)

Global Unique Index
A Different Approach

In this talk

2

• Few words about me
• Global index – Background information, benefit and drawbacks
• Global unique index – Introduction to our approach
• Global unique index – Syntax
• Global unique index – How it works
• Global unique index – Benchmark numbers
• Global unique index – The Lock Problem
• Summary
• Related links

Few Words About Me: Cary

3

• Bachelor of Electrical Engineering graduate from University of

British Columbia (UBC) In Vancouver in 2012

• Worked as a software developer & team lead in a smart

metering innovation company after graduation

• Joined Highgo Software in 2019 to start my PostgreSQL journey

• Post-graduate instructor at Peking University for open-source

projects in 2021 (based on PostgreSQL of course)

• Worked on several aspects of PG including sharding

enhancement, distributed database, HA, shared storage,

security…etc

Global Index – Background
Information

4

• First proposed in 2019 with title “Proposal:

Global Index”

• Only applicable to partitioned tables/indexes

• One index relation at global scale that indexes

all child table partitions. (1 to many)

• Kind of combine all partitions into one

Regular Index

Global Index

Images source:

https://www.filibeto.org/sun/lib/nonsun/oracle/11.1.0.6.0/B28359_01/server.111/b32024/partition.htm

https://www.filibeto.org/sun/lib/nonsun/oracle/11.1.0.6.0/B28359_01/server.111/b32024/partition.htm

Global Index – Benefit

5

• Cross-partition uniqueness guarantee

• Performance increase

• Partitioned keys no longer required to

include when creating a unique index

Global Index – Drawbacks

6

• Architectural changes needed

• A large global index might reintroduce problems that large relations already have

• Slower vacuum and maintenance

• Slower indexing

• … etc

• That kind of contradicts the purpose of having a partitioned table.

Global Unique Index – our Approach

7

• Keep in mind the difference in terminology: “Global

Index” vs “Global Unique Index”

• To achieve the same benefit without invasive changes to

partition table architecture.

• We add new logics to achieve cross-partition uniqueness

• Architecturally the same as regular unique index except

one can guarantee cross-partition uniqueness check, the

other cannot.

Global Unique Index – Syntax

8

• A new clause “GLOBAL” to be used in conjunction

with “CREATE UNIQUE INDEX”

• No longer need to include all partition keys when

creating a unique index

> CREATE TABLE gidx_part (a int, b int, c text) PARTITION BY RANGE (a);

> CREATE TABLE gidx_part1 partition of gidx_part FOR VALUES FROM (0) TO (10);

> CREATE TABLE gidx_part2 partition of gidx_part FOR VALUES FROM (10) TO (20);

> INSERT INTO gidx_part values(5, 5, 'test’);

> INSERT INTO gidx_part values(15, 5, 'test');

> CREATE UNIQUE INDEX global_unique_idx ON gidx_part USING BTREE(b) GLOBAL;

ERROR: could not create unique index "global_unique_idx"

DETAIL: Key (bid)=(5) is duplicated.

No partition

key here

Global Unique Index –
Without GLOBAL

9

• Baseline PG requires inclusion of all partition keys

when creating unique index (multi-column index)

• Lifting this constraint results in increased query

performance (more later)

> CREATE TABLE gidx_part (a int, b int, c text) PARTITION BY RANGE (a);

> CREATE TABLE gidx_part1 partition of gidx_part FOR VALUES FROM (0) TO (10);

> CREATE TABLE gidx_part2 partition of gidx_part FOR VALUES FROM (10) TO (20);

> INSERT INTO gidx_part values(5, 5, 'test’);

> INSERT INTO gidx_part values(15, 5, 'test');

> CREATE UNIQUE INDEX global_unique_idx ON gidx_part USING BTREE(b);

ERROR: unique constraint on partitioned table must include all partitioning columns

DETAIL: UNIQUE constraint on table "gidx_part" lacks column "a" which is part of the partition key.

Needs (a, b)

here without

global.

Global Unique Index – New Relkind

10

• Unique index created with “GLOBAL” clause will have a new relkind = “g”

• This is the main identifier for the global uniqueness implementation

How Regular Unique Index
Create Works

11

• Btree Index creation requires heap scan, scanning all tuples into “spool” structure

• Based on index key, perform sorting within spool and then a btree is constructed from sorted spool.

• Uniqueness check happens during sorting.

• For partitioned table index creation, this process is repeated per partition

• Cannot guarantee cross-partition uniqueness

How Global Unique Index
Create Works

12

• If we heap scan all partitions into a single & global-

scale “spool” structure and then do a “final sorting”

after the last partition scan, can we achieve global

uniqueness?

• Indeed yes, but it also creates new problems:

• How much data can a spool structure hold?

• What if parallelism is used to create the global

unique index

Problems with this Approach

13

• Size of spool?

• Specified by “maintenance_work_mem” (default 64MB)

• When full, PG switches to “tape-based sorting”, meaning, it will sort on current spool, save

the results in a temporary file and empties the spool.

• Finally, it performs a “merge sort” of all temp files while building the final btree.

• Create global unique index in parallel?

• Also achieved by tape-based sorting, worker writes sort results on file, leader does the

merge sort
Also known as

“logical tapes”

Global Unique Index – ATTACH

14

• Requires more work than regular unique index attach

• If the table has no data, we can attach right away

• If it has data, we need to utilize the “spool” and

“sorting” mechanism again to ensure global

uniqueness.

Global Unique Index – DETACH

15

• Detach a partition with global unique index is relatively easy

• We simply go through the same detach process that current PG already has

• Except that at the end of the detach, we will transform all global unique index into regular

unique index

• This is done simply by changing the relkind from ‘g’ to ‘i’.

Global Unique Index –
INSERT & UPDATE

16

• For every tuple inserted or updated, PG attempts to

fetch the same tuple with the same unique index key

from the current partition to determine if it violates

uniqueness.

• With a global unique index, this fetch is extended to all

“other partitions” as well

• Adds extra performance cost (has room for future

optimization)

Global Unique Index – Timings

17

> create table test(a int, b int, c text) partition by range (a);
> create table test1 partition of test for values from (MINVALUE) to (1000000);
> create table test2 partition of test for values from (1000000) to (2000000);
> create table test3 partition of test for values from (2000000) to (3000000);
> create table test4 partition of test for values from (3000000) to (4000000);
> create table test5 partition of test for values from (4000000) to (5000000);
> create table test6 partition of test for values from (5000000) to (6000000);

> create unique index myindex on test(b) global;
> insert into test values(generate_series(0,5999999), generate_series(0,5999999), 'test’);
> delete from test;
> drop index myindex;
> insert into test values(generate_series(0,5999999), generate_series(0,5999999), 'test');
> create unique index myindex on test(b) global;
> create table test7 (a int, b int, c text);
> insert into test7 values(generate_series(6000000, 6999999),

generate_series(6000000, 6999999), 'test');
> alter table test attach partition test7 for values from (6000000) TO (7000000);
> alter table test detach partition test7;

Global Unique Index

156285ms to insert
6592ms to delete
3957ms to create
3650ms to attach
17ms to detach

Regular Unique Index

26007ms to insert
6738ms to delete
2933ms to create
628ms to attach
17ms to detach

Performance loss for insert & attach are

proportional to number of partitions

Benchmark Number – SELECT Only Using
Unique Column as Lookup Key

18

• Test condition with pgbench:

• 800,000,000 records (110GB)

• 200 partitions

• SELECT only

• Results

• No index: 0.02 tps

• Unique index (aid + bid): 0.14 tps

• Global unique index (bid):

734 ~ 1398 tps

Benchmark Number –
SELECT + UPDATE

19

• Same test condition with pgbench

• Results

• No index: 0.02 tps

• Unique index (aid + bid): 0.14 tps

• Global unique index (bid):

270 ~ 360 tps

Performance Impact Summary

20

• INSERT and ATTACH have the most performance degradation and is directly proportional to

number of partitions

• CREATE is about 35% slower due to maintaining a separate “spool” structure

• DELETE and DETACH are roughly the same with or without global unique index

• SELECT on global unique index is multiple-magnitude faster than traditional unique index

due to the removal of partition keys during CREATE.

Possible Ways to Improve
Performance on INSERT

21

• INSERT is the slowest because it must visit all other

partitions for uniqueness check

• We could maintain a max and min value(s) mapping per

partition that are updated when a partition is modified.

• Based on this min and max values, the system could

avoid visiting a partition if the unique key value to be

inserted is outside of the min – max range.

• An idea from community, have not tried it yet :p

Global Unique Index –
Lock Problems For INSERT

22

• To INSERT, backend A acquires AccessShareLock on all

other partitions to check uniqueness. This allows

backend B to insert a duplicate right after backend A

finishes its checking.

• A “transaction level lock” will be triggered when this

happens

• Possible deadlock could be triggered when both

backend A and B detects each other’s duplicate at the

same time.

May be okay, because this happens

when there is a global conflict detected.

It is going to error out anyway

Global Unique Index –
Lock Problems For ATTACH

23

• ATTACH tries to acquire ShareLock on all existing

partitions and partition-to-be for uniqueness

checks.

• If there are concurrent inserts prior to attach,

some partitions may be exclusively locked,

causing attach to wait.

• If ATTACH happens first, the INSERTs will have to

wait instead

• This locking limits the flexibility of ATTACH

Global Unique Index – Possible Solution
to ATTACH Lock Problems

24

• We cannot lower ATTACH’s lock level to AccessShareLock

• A duplicate can always be inserted after ATTACH finishes checking a partition without

proper locking

• There is no “transaction level lock“ involved during attach

• We could perhaps add “ATTACH CONCURRENTLY” feature similar to “CREATE INDEX

CONCURRENTLY for partitioned tables” that uses the same principle but for ATTACH.

• More details can be found here:

https://www.postgresql.org/message-id/20201031063117.GF3080%40telsasoft.com

https://www.postgresql.org/message-id/20201031063117.GF3080%40telsasoft.com

Global Unique Index - Summary

25

The good:

• Cross-partition uniqueness guarantee

• Significant increase in SELECT performance on unique key columns

• Inclusion of partition keys no longer enforced

• No architecture change to partitioned table, optimizer and planner

The bad:

• INSERT and ATTACH are slow with more number of partitions (have room for optimization)

• ATTACH needs to lock all partitions from concurrent insertions to ensure uniqueness

• Possible deadlock with concurrent INSERTs

Related Links

26

• Original discussion on global index

• https://www.postgresql.org/message-

id/CALtqXTcurqy1PKXzP9XO%3DofLLA5wBSo77BnUnYVEZpmcA3V0ag%40mail.gmail.com

• Discussion on global unique index

• https://www.postgresql.org/message-id/184879c5306.12490ea581628934.7312528450011769010@highgo.ca

• Related blogs

• https://www.highgo.ca/2022/10/14/global-index-a-different-approach/

• https://www.highgo.ca/2022/10/28/cross-partition-uniqueness-guarantee-with-global-unique-index/

• https://www.highgo.ca/2022/11/25/global-index-benchmark-with-pgbench/

https://www.postgresql.org/message-id/CALtqXTcurqy1PKXzP9XO=ofLLA5wBSo77BnUnYVEZpmcA3V0ag@mail.gmail.com
https://www.postgresql.org/message-id/CALtqXTcurqy1PKXzP9XO=ofLLA5wBSo77BnUnYVEZpmcA3V0ag@mail.gmail.com
https://www.postgresql.org/message-id/184879c5306.12490ea581628934.7312528450011769010@highgo.ca
https://www.highgo.ca/2022/10/14/global-index-a-different-approach/
https://www.highgo.ca/2022/10/28/cross-partition-uniqueness-guarantee-with-global-unique-index/
https://www.highgo.ca/2022/11/25/global-index-benchmark-with-pgbench/

27

Thank You
Any Question?

You can email Cary at:

cary.huang@highgo.ca

融知与行 瀚且高远

THANKS

Knowledge and action constitute to immense accomplishment

28

	Slide 1
	Slide 2: In this talk
	Slide 3: Few Words About Me: Cary
	Slide 4: Global Index – Background Information
	Slide 5: Global Index – Benefit
	Slide 6: Global Index – Drawbacks
	Slide 7: Global Unique Index – our Approach
	Slide 8: Global Unique Index – Syntax
	Slide 9: Global Unique Index – Without GLOBAL
	Slide 10: Global Unique Index – New Relkind
	Slide 11: How Regular Unique Index Create Works
	Slide 12: How Global Unique Index Create Works
	Slide 13: Problems with this Approach
	Slide 14: Global Unique Index – ATTACH
	Slide 15: Global Unique Index – DETACH
	Slide 16: Global Unique Index – INSERT & UPDATE
	Slide 17: Global Unique Index – Timings
	Slide 18: Benchmark Number – SELECT Only Using Unique Column as Lookup Key
	Slide 19: Benchmark Number – SELECT + UPDATE
	Slide 20: Performance Impact Summary
	Slide 21: Possible Ways to Improve Performance on INSERT
	Slide 22: Global Unique Index – Lock Problems For INSERT
	Slide 23: Global Unique Index – Lock Problems For ATTACH
	Slide 24: Global Unique Index – Possible Solution to ATTACH Lock Problems
	Slide 25: Global Unique Index - Summary
	Slide 26: Related Links
	Slide 27
	Slide 28

